Analysis of Microarray Gene Expression Data

PDF
(377 Seiten)
  Sofort lieferbar | Lieferzeit:3-5 Tage I
ISBN-13:
9781402077883
Einband:
PDF
Seiten:
377
Autor:
Mei-Ling Ting Lee
eBook Typ:
PDF
eBook Format:
PDF
Kopierschutz:
Adobe DRM [Hard-DRM]
Sprache:
Englisch
Beschreibung:

After genomic sequencing, microarray technology has emerged as a widely used platform for genomic studies in the life sciences. Microarray technology provides a systematic way to survey DNA and RNA variation. With the abundance of data produced from microarray studies, however, the ultimate impact of the studies on biology will depend heavily on data mining and statistical analysis. The contribution of this book is to provide readers with an integrated presentation of various topics on analyzing microarray data.
After genomic sequencing, microarray technology has emerged as a widely used platform for genomic studies in the life sciences. Microarray technology provides a systematic way to survey DNA and RNA variation. With the abundance of data produced from microarray studies, however, the ultimate impact of the studies on biology will depend heavily on data mining and statistical analysis. The contribution of this book is to provide readers with an integrated presentation of various topics on analyzing microarray data.
  • Part I: Genome Probing Using Microarrays. 1. Introduction. 2. DNA, RNA, Proteins, and Gene Expression. 3. Microarray Technology. 4. Inherent Variability in Array Data. 5. Background Noise. 6. Transformation and Normalization. 7. Missing Values in Array Data. 8. Saturated Intensity Readings.
  • Part II: Statistical Models and Analysis. 9. Experimental Design. 10. ANOVA Models for Microarray Data. 11. Multiple Testing in Microarray Studies. 12. Permutation Tests in Microarray Data. 13. Bayesian Methods for Microarray Data. 14. Power and Sample Size Considerations.
  • Part III: Unsupervised Exploratory Analysis. 15. Cluster Analysis. 16. Principal Components and Singular Value Decomposition. 17. Self-organizing Maps.
  • Part IV: Supervised Learning Methods. 18. Discrimination and Classification. 19. Artificial Neural Networks. 20. Support Vector Machines.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.