Metalloprotein Active Site Assembly

E-Book
(424 Seiten)
  Sofort lieferbar | Lieferzeit:3-5 Tage I

Unser bisheriger Preis:ORGPRICE: 203,47 EUR

Jetzt 158,99 EUR*

ISBN-13:
9781119159858
Einband:
E-Book
Seiten:
424
Autor:
Michael K. Johnson
Serie:
1, EIC Books
eBook Typ:
Adobe Digital Editions
eBook Format:
E-Book
Kopierschutz:
Adobe DRM [Hard-DRM]
Sprache:
Englisch
Beschreibung:

Summarizes the essential biosynthetic pathways for assembly of metal cofactor sites in functional metalloproteins Metalloprotein Active Site Assembly focuses on the processes that have evolved to orchestrate the assembly of metal cofactor sites in functional metalloproteins. It goes beyond the simple incorporation of single metal ions in a protein framework, and includes metal cluster assembly, metal-cofactor biosynthesis and insertion, and metal-based post-translational modifications of the protein environments that are necessary for function. Several examples of each of these areas have now been identified and studied; the current volume provides the current state-of-the-art understanding of the processes involved. An excellent companion to the earlier book in this series Metals in Cells which discussed both the positive and negative effects of cellular interactions with metals this comprehensive book provides a diverse sampling of what is known about metalloprotein active site assembly processes. It covers all major biological transition metal components (Mn, Fe, Co, Ni, Mo), as well as the other inorganic components, metal-binding organic cofactors (e.g., heme, siroheme, cobalamin, molybdopterin), and post-translationally modified metal binding sites that make up the patchwork of evolved biological catalytic sites. The book compares and contrasts the biosynthetic assembly of active sites involving all biological metals. This has never been done before since it is a relatively new, fast-developing area of research. Metalloprotein Active Site Assembly is an ideal text for practitioners of inorganic biochemistry who are studying the biosynthetic pathways and gene clusters involved in active site assembly, and for inorganic chemists who want to apply the concepts learned to potential synthetic pathways to active site mimics.
Summarizes the essential biosynthetic pathways for assembly of metal cofactor sites in functional metalloproteins
Metalloprotein Active Site Assembly focuses on the processes that have evolved to orchestrate the assembly of metal cofactor sites in functional metalloproteins. It goes beyond the simple incorporation of single metal ions in a protein framework, and includes metal cluster assembly, metal-cofactor biosynthesis and insertion, and metal-based post-translational modifications of the protein environments that are necessary for function. Several examples of each of these areas have now been identified and studied; the current volume provides the current state-of-the-art understanding of the processes involved.

An excellent companion to the earlier book in this series Metals in Cells--which discussed both the positive and negative effects of cellular interactions with metals--this comprehensive book provides a diverse sampling of what is known about metalloprotein active site assembly processes. It covers all major biological transition metal components (Mn, Fe, Co, Ni, Mo), as well as the other inorganic components, metal-binding organic cofactors (e.g., heme, siroheme, cobalamin, molybdopterin), and post-translationally modified metal binding sites that make up the patchwork of evolved biological catalytic sites. The book compares and contrasts the biosynthetic assembly of active sites involving all biological metals. This has never been done before since it is a relatively new, fast-developing area of research.

Metalloprotein Active Site Assembly is an ideal text for practitioners of inorganic biochemistry who are studying the biosynthetic pathways and gene clusters involved in active site assembly, and for inorganic chemists who want to apply the concepts learned to potential synthetic pathways to active site mimics.
Contributors ix

Series Preface xiii

Volume Preface xv

Part 1: Assembly and Trafficking of Simple Fe-S Clusters 1

Nif System for Simple [Fe-S] Cluster Assembly in Nitrogen-Fixing Bacteria 3
Patricia C. Dos Santos and Dennis R. Dean

Iron-Sulfur Cluster Assembly in Bacteria and Eukarya using the ISC Biosynthesis Machinery 17
Sandrine Ollagnier de Choudens and Hélène Puccio

The Suf System in Archaea, Bacteria, and Eukaryotic Organelles 37
Guangchao Dong, Savannah Witcher, F. Wayne Outten and Marinus Pilon

Roles of Class II Glutaredoxins in the Maturation of Fe-S Proteins 53
Jonathan Przybyla-Toscano, Thomas Roret, Jérémy Couturier and Nicolas Rouhier

Part 2: Assembly of Complex and Heterometallic Fe-S Cluster Active Sites 73

Nitrogenase Metallocluster Assembly 75
Nathaniel S. Sickerman, Lee A. Rettberg, Yilin Hu and Markus W. Ribbe

Metallocluster Assembly: Maturation of [FeFe]-Hydrogenases 93
Giorgio Caserta, Ludovic Pecqueur, Cecilia Papini and Marc Fontecave

CO Dehydrogenase and Acetyl-CoA Synthase 111
Holger Dobbek

Part 3: Assembly of Homometallic and Heterometalic Cu Cluster Active Sites 123

Assembly of Dinuclear Copper Center in Tyrosinases and Hemocyanins 125
Nobutaka Fujieda and Shinobu Itoh

Multicopper Oxidases 139
Daniel J. Kosman

Assembly of the Redox-Active Metal Centers of Cytochrome c Oxidase 157
Eva Nyvltova, Antoni Barrientos and Jonathan Hosler

CuA and CuZ Center Assembly in Nitrous Oxide Reductase 185
Sofia R. Pauleta and Isabel Moura

MoCu CO Dehydrogenase and its Active-Site Assembly 197
Frank Mickoleit

Part 4: Assembly of Homometallic and Heterometallic Mn Clusters 213

Homo- and Heterometallic Dinuclear Manganese Proteins: Active Site Assembly 215
Gustav Berggren, Daniel Lundin and Britt-Marie Sjöberg

Biogenesis and Assembly of the CaMn4O5 Core of Photosynthetic Water Oxidases and Inorganic Mutants 233
Colin Gates, Gennady Ananyev and G. Charles Dismukes

Part 5: Assembly of Homometallic and Heterometallic Ni Clusters 249

Urease Activation 251
Robert P. Hausinger

Insights into [NiFe]-Hydrogenase Active Site Metallocluster Assembly 261
Robert Gary Sawers and Constanze Pinske

Part 6: Assembly of Cofactors for Binding Active-Site Metal Centers 273

Moco in Mo/W Enzymes 275
Silke Leimkühler

Heme Biosynthesis 299
Amy E. Medlock and Harry A. Dailey

Siroheme Assembly and Insertion to Nitrite and Sulfite Reductase 315
M. Elizabeth Stroupe and Martin J. Warren

Biosynthesis of Coenzyme F430 and the Posttranslational Modification of the Active Site Region of Methyl-Coenzyme M Reductase 323
Steven O. Mansoorabadi, Kaiyuan Zheng and Phong D. Ngo

Coenzyme B12 Biosynthesis in Bacteria and Archaea 335
Theodoric A. Mattes, Jorge C. Escalante-Semerena, Evelyne Deery and Martin J. Warren

Crosslinked Cys-Tyr Free Radical Redox Cofactor 361
James W. Whittaker

Topaquinone Biogenesis and Lysyl Tyrosine Quinone Biogenesis in Cu Amine Oxidases 375
David M. Dooley, Doreen E. Brown and Eric M. Shepard

Index 389
Summarizes the essential biosynthetic pathways for assembly of metal cofactor sites in functional metalloproteins Metalloprotein Active Site Assembly focuses on the processes that have evolved to orchestrate the assembly of metal cofactor sites in functional metalloproteins. It goes beyond the simple incorporation of single metal ions in a protein framework, and includes metal cluster assembly, metal-cofactor biosynthesis and insertion, and metal-based post-translational modifications of the protein environments that are necessary for function. Several examples of each of these areas have now been identified and studied; the current volume provides the current state-of-the-art understanding of the processes involved. An excellent companion to the earlier book in this series Metals in Cells which discussed both the positive and negative effects of cellular interactions with metals this comprehensive book provides a diverse sampling of what is known about metalloprotein active site assembly processes. It covers all major biological transition metal components (Mn, Fe, Co, Ni, Mo), as well as the other inorganic components, metal-binding organic cofactors (e.g., heme, siroheme, cobalamin, molybdopterin), and post-translationally modified metal binding sites that make up the patchwork of evolved biological catalytic sites. The book compares and contrasts the biosynthetic assembly of active sites involving all biological metals. This has never been done before since it is a relatively new, fast-developing area of research. Metalloprotein Active Site Assembly is an ideal text for practitioners of inorganic biochemistry who are studying the biosynthetic pathways and gene clusters involved in active site assembly, and for inorganic chemists who want to apply the concepts learned to potential synthetic pathways to active site mimics.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.